Class-based Prediction Errors to Detect Hate Speech with Out-of-vocabulary Words

نویسندگان

  • Joan Serrà
  • Ilias Leontiadis
  • Dimitris Spathis
  • Gianluca Stringhini
  • Jeremy Blackburn
  • Athena Vakali
چکیده

Common approaches to text categorization essentially rely either on n-gram counts or on word embeddings. This presents important difficulties in highly dynamic or quickly-interacting environments, where the appearance of new words and/or varied misspellings is the norm. A paradigmatic example of this situation is abusive online behavior, with social networks and media platforms struggling to effectively combat uncommon or nonblacklisted hate words. To better deal with these issues in those fast-paced environments, we propose using the error signal of class-based language models as input to text classification algorithms. In particular, we train a next-character prediction model for any given class, and then exploit the error of such class-based models to inform a neural network classifier. This way, we shift from the ability to describe seen documents to the ability to predict unseen content. Preliminary studies using out-of-vocabulary splits from abusive tweet data show promising results, outperforming competitive text categorization strategies by 4–11%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Class-Based N-Gram Language Model for New Words Using Out-of-Vocabulary to In-Vocabulary Similarity

Out-of-vocabulary (OOV) words create serious problems for automatic speech recognition (ASR) systems. Not only are they missrecognized as in-vocabulary (IV) words with similar phonetics, but the error also causes further errors in nearby words. Language models (LMs) for most open vocabulary ASR systems treat OOV words as a single entity, ignoring the linguistic information. In this paper we pre...

متن کامل

Spoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting

Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...

متن کامل

Multi Class-based n-gram Language Model for New Words Using Web Data

Out-of-vocabulary (OOV) words cause a serious problem for automatic speech recognition (ASR) system. Not only it will be miss-recognized as an in-vocabulary word with similar phonetics, but the error will also affect nearby words to make errors. Language models (LMs) for most of open vocabulary ASR systems treat OOV words as one entity, ignoring the linguistic information. In this paper we pres...

متن کامل

Recognition Confidence Measures: Detection of Misrecognitions and Out-Of-Vocabulary Words

This paper describes and evaluates a new technique for measuring confidence in word strings produced by speech recognition systems. It detects misrecognized and out-of-vocabulary words in spontaneous spoken dialogs. The system uses multiple, diverse knowledge sources including acoustics, semantics, pragmatics and discourse to determine if a word string is misrecognized. When likely misrecogniti...

متن کامل

Combined low level and high level features for out-of-vocabulary word detection

This paper addresses the issue of Out-Of-Vocabulary (OOV) words detection in Large Vocabulary Continuous Speech Recognition (LVCRS) systems. We propose a method inspired by confidence measures, that consists in analyzing the recognition system outputs in order to automatically detect errors due to OOV words. This method combines various features based on acoustic, linguistic, decoding graph and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017